metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(4-carboxy-2-propyl-1*H*-imidazole-5-carboxylato- $\kappa^2 N^3$, O^4)zinc(II) *N*,*N*-dimethylformamide disolvate

Cheng-Jun Hao* and Xiao-Jun Zhao

College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, People's Republic of China Correspondence e-mail: haochengjun2008@163.com

Received 5 May 2010; accepted 10 June 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.076; data-to-parameter ratio = 13.5.

In the crystal structure of the title compound, $[Zn(C_8H_9N_2O_4)_2(H_2O)_2]\cdot 2C_3H_7NO$, the Zn^{II} atom is coordinated by two *N*,*O*-bidentate 2-propyl-1*H*-imidazole-4,5dicarboxylate anions and two water molecules in a distorted octahedral environment. The asymmetric unit consists of one Zn^{II} atom located on a center of inversion as well as one anion, one water molecule and one additional dimethylformamide molecule that occupy general positions. Between the carboxyl and the carboxylate group an intramolecular hydrogen bond is found in which the hydroxy H atom is disordered. Disorder is also found for the H atoms of one of the three methyl groups. In the crystal structure, additional intermolecular N-H···O and O-H···O hydrogen bonding is found.

Related literature

For imidazole-4,5-dicarboxylic complexes, see: Maji *et al.* (2005); Yang & Zhang (2006).

Experimental

Crystal data

 $[Zn(C_8H_9N_2O_4)_2(H_2O)_2] \cdot 2C_3H_7NO$ $M_r = 641.94$ Triclinic, $P\overline{1}$ a = 7.3619 (9) Å b = 9.3194 (13) Å c = 11.2301 (15) Å $\alpha = 76.281$ (1)° $\beta = 87.621$ (2)°

Data collection

Bruker SMART 1000 CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{min} = 0.685$, $T_{max} = 0.797$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.076$ S = 1.062425 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O6−H2 <i>O</i> 6···O4 ⁱ	0.82	2.16	2.9594 (14)	167
$O6-H1O6\cdots O4^{n}$	0.82	1.98	2.796	175
O3−H1 <i>O</i> 3···O2	0.82	1.67	2.478	169
O2−H1 <i>O</i> 2···O3	0.82	1.66	2.478	177
$N2-H1N1\cdots O5^{iii}$	0.86	1.84	2.6789 (17)	166

 $\gamma = 68.888 \ (1)^{\circ}$

Z = 1

V = 697.44 (16) Å³

Mo $K\alpha$ radiation

 $0.43 \times 0.28 \times 0.25 \text{ mm}$

3640 measured reflections 2425 independent reflections

2205 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.95 \text{ mm}^{-1}$

T = 298 K

 $R_{\rm int} = 0.015$

179 parameters

 $\Delta \rho_{\rm max} = 0.26 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$

Symmetry codes: (i) -x + 2, -y, -z + 1; (ii) x, y + 1, z; (iii) x + 1, y - 1, z.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge Pingdingshan University for support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2185).

References

- Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Maji, T. K., Mostafa, G., Chang, H. C. & Kitagawa, S. (2005). *Chem. Commun.* pp. 2436–2438

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Yang, R. Q. & Zhang, X. M. (2006). Inorg. Chem. 45, 4801-4810.

Acta Cryst. (2010). E66, m810 [doi:10.1107/S1600536810022282]

Diaquabis(4-carboxy-2-propyl-1*H*-imidazole-5-carboxylato- $\kappa^2 N^3$, O^4)zinc(II) N, N-dimethylform-amide disolvate

C.-J. Hao and X.-J. Zhao

Comment

Imidazole-4,5-dicarboxylic acid (H₃Imda) can be deprotonated to generate three types of anions, namely Imda³⁻, HImda²⁻ and H₂Imda⁻and react with metal ions to form fascinating structures with different structures and useful properties (Maji *et al.*, 2005; Yang & Zhang, 2006). We have therefore reacted the 2-propyl-1*H*-imidazole-4,5-dicarboxylic acid with Zn(NO₃)₂ under hydrothermal conditions to obtain a new Zn^{II} complex and its structure is reported here. As illustrated in figure 1, the title complex molecule is a discrete complex, consisting of one Zn^{II} ion, two mono-deprotonated 2-Propyl-1*H*-imidazole-4,5-dicarboxy anions and two water molecules. The Zn ^{II} atom resides on a crystallographic inversion centre and is transcoordinated by two N,*O*-bidentate 2-Propyl-1*H*-imidazole-4,5-dicarboxylate anions [Zn—O = 2.2052 (14) Å and Zn—N = 2.0643 (15) Å] and two water molecules [Zn—O = 2.1612 (15) Å], within a slightly distorted octahedral environment, with adjacent cis angles of [78.59 (6) °-101.41 (6) °]. The carboxyl and carboxylate group are via an intramolecular hydrogen bond in which the H atom is disordered. (Table 1). The crystal structure contain additional dimethylfromamide molecules that are linked to the complexes via N—H···O hydrogen bonding (Fig. 2). The complexes are additionally connected by intermolecular O—H···O hydrogen bonding between the carboxyl O atoms and the water H atoms (Table 1 and Fig. 2).

Experimental

A mixture of $Zn(NO_3)_2$ (0.2 mmol, 0.03 g) and 2-propyl-1*H*-imidazole-4,5-dicarboxylic acid(0.5 mmol, 0.99 g) and 10 ml of C_3H_7NO was loaded in a 25 ml Telflon-lined stainless steel vessel and heated at 373k for 3 days. White crystals were obtained when the sample was cooled to room temperature slowly.

Refinement

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C, N)$. The O-H H atoms were located in difference map, their bond lengths set to ideal values and finally they were refined using a riding model with O—H = 0.85 Å. The H atom of the carboxyl group is disordered and was refined using a split model with sof of 0.6 and 0.4. The H atoms of one of the three methyl groups are also disordered and were refined using a split model with two orientations each rotated by 60° and sof of 0.6 and 0.4.

Figures

Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids (H atoms are represented by arbitrary spheres). Disordered H atoms are shown with full and open bonds. Symmetry codes: (i) 1-x, 1-y, 1-z.

Fig. 2. View of the three-dimensional network constructed by O—H…O and N—H…O hydrogen bonding interactions (the disordering is not shown for clarity and h<drogen bonding is shown as dashed lines)

$Diaquabis (4-carboxy-2-propyl-1 H-imidazole-5-carboxylato- \kappa^2 N^3, O^4) zinc (II) \ N, N-dimethyl formamide \ disolvate$

Crystal data

$[Zn(C_8H_9N_2O_4)_2(H_2O)_2] \cdot 2C_3H_7NO$	Z = 1
$M_r = 641.94$	F(000) = 336
Triclinic, <i>P</i> T	$D_{\rm x} = 1.528 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.3619 (9) Å	Cell parameters from 2051 reflections
b = 9.3194 (13) Å	$\theta = 2.5 - 23.9^{\circ}$
c = 11.2301 (15) Å	$\mu = 0.95 \text{ mm}^{-1}$
$\alpha = 76.281 \ (1)^{\circ}$	T = 298 K
$\beta = 87.621 \ (2)^{\circ}$	Block, colorless
$\gamma = 68.888 \ (1)^{\circ}$	$0.43 \times 0.28 \times 0.25 \text{ mm}$
$V = 697.44 (16) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	2425 independent reflections
Radiation source: fine-focus sealed tube	2205 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.015$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$h = -8 \rightarrow 8$
$T_{\min} = 0.685, \ T_{\max} = 0.797$	$k = -10 \rightarrow 11$
3640 measured reflections	$l = -13 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H-atom parameters constrained
$wR(F^2) = 0.076$	$w = 1/[\sigma^2(F_o^2) + (0.0389P)^2 + 0.2536P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2425 reflections	$\Delta \rho_{max} = 0.26 \text{ e} \text{ Å}^{-3}$
179 parameters	$\Delta \rho_{\rm min} = -0.33 \text{ e } \text{\AA}^{-3}$
0 restraints	Extinction correction: <i>SHELXTL</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.067 (4)

methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Zn1	0.5000	0.5000	0.5000	0.02921 (14)	
N1	0.6351 (2)	0.25671 (17)	0.54820 (14)	0.0248 (3)	
N2	0.8023 (2)	0.00172 (18)	0.60587 (15)	0.0287 (4)	
H1N1	0.8740	-0.0885	0.6506	0.034*	
N3	0.1215 (3)	0.4911 (2)	0.86419 (18)	0.0419 (4)	
O1	0.4380 (2)	0.43510 (15)	0.33379 (12)	0.0342 (3)	
O2	0.49486 (10)	0.22669 (8)	0.25454 (6)	0.0384 (4)	
H1O2	0.5591	0.1315	0.2727	0.058*	0.60
O3	0.68632 (10)	-0.06116 (8)	0.31714 (6)	0.0423 (4)	
H1O3	0.6132	0.0311	0.2920	0.063*	0.40
O4	0.86310 (10)	-0.23869 (8)	0.47855 (6)	0.0412 (4)	
O5	0.03879 (10)	0.74901 (8)	0.76828 (6)	0.0575 (5)	
O6	0.77394 (10)	0.51222 (8)	0.43114 (6)	0.0381 (4)	
H1O6	0.7938	0.5887	0.4435	0.057*	
H2O6	0.8631	0.4310	0.4647	0.057*	
C1	0.5133 (3)	0.2910 (2)	0.34026 (17)	0.0275 (4)	

C2	0.6268 (3)	0.1875 (2)	0.45418 (17)	0.0240 (4)	
C3	0.7305 (3)	0.0277 (2)	0.48902 (17)	0.0251 (4)	
C4	0.7647 (3)	-0.1017 (2)	0.42490 (19)	0.0306 (4)	
C5	0.7424 (3)	0.1403 (2)	0.63940 (17)	0.0272 (4)	
C6	0.7850 (3)	0.1559 (2)	0.76285 (18)	0.0357 (5)	
H6C	0.7435	0.2675	0.7620	0.043*	
H6D	0.9247	0.1093	0.7807	0.043*	
C7	0.6844 (4)	0.0768 (3)	0.8641 (2)	0.0553 (7)	
H7A	0.5456	0.1187	0.8432	0.066*	
H7B	0.7320	-0.0358	0.8679	0.066*	
C8	0.7156 (4)	0.0996 (3)	0.9888 (2)	0.0571 (7)	
H8B	0.7054	0.2071	0.9815	0.086*	0.60
H8C	0.8429	0.0289	1.0226	0.086*	0.60
H8A	0.6186	0.0775	1.0420	0.086*	0.60
H8E	0.8356	0.1177	0.9921	0.086*	0.40
H8D	0.7220	0.0065	1.0504	0.086*	0.40
H8F	0.6094	0.1893	1.0037	0.086*	0.40
С9	0.0112 (3)	0.6238 (3)	0.7883 (2)	0.0442 (6)	
Н9	-0.0947	0.6218	0.7473	0.053*	
C10	0.2943 (4)	0.4853 (3)	0.9244 (3)	0.0616 (7)	
H10A	0.4070	0.4350	0.8825	0.092*	
H10B	0.3051	0.4261	1.0080	0.092*	
H10C	0.2858	0.5910	0.9226	0.092*	
C11	0.0897 (6)	0.3442 (3)	0.8741 (3)	0.0793 (10)	
H11A	-0.0320	0.3659	0.8325	0.119*	
H11B	0.0863	0.2947	0.9590	0.119*	
H11C	0.1939	0.2747	0.8372	0.119*	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0353 (2)	0.01589 (19)	0.0328 (2)	-0.00545 (13)	-0.00206 (13)	-0.00454 (13)
N1	0.0288 (8)	0.0178 (8)	0.0263 (8)	-0.0071 (6)	-0.0014 (6)	-0.0037 (6)
N2	0.0310 (8)	0.0161 (8)	0.0325 (9)	-0.0048 (7)	-0.0042 (7)	0.0012 (7)
N3	0.0475 (11)	0.0272 (10)	0.0455 (11)	-0.0102 (8)	0.0006 (9)	-0.0037 (8)
01	0.0437 (8)	0.0194 (7)	0.0312 (8)	-0.0033 (6)	-0.0080 (6)	-0.0020 (6)
O2	0.0494 (9)	0.0298 (8)	0.0317 (8)	-0.0069 (7)	-0.0092 (6)	-0.0090 (6)
O3	0.0549 (9)	0.0284 (8)	0.0421 (9)	-0.0081 (7)	-0.0025 (7)	-0.0156 (7)
O4	0.0415 (8)	0.0192 (7)	0.0586 (10)	-0.0040 (6)	-0.0032 (7)	-0.0113 (7)
O5	0.0633 (11)	0.0276 (9)	0.0651 (12)	-0.0046 (8)	-0.0201 (9)	0.0046 (8)
O6	0.0358 (8)	0.0230 (7)	0.0548 (10)	-0.0097 (6)	0.0027 (7)	-0.0097 (7)
C1	0.0283 (10)	0.0239 (10)	0.0281 (10)	-0.0075 (8)	0.0003 (8)	-0.0050 (8)
C2	0.0248 (9)	0.0205 (9)	0.0264 (10)	-0.0081 (7)	0.0016 (7)	-0.0051 (7)
C3	0.0245 (9)	0.0199 (9)	0.0300 (10)	-0.0077 (7)	0.0017 (7)	-0.0045 (8)
C4	0.0285 (10)	0.0229 (10)	0.0410 (12)	-0.0089 (8)	0.0050 (9)	-0.0100 (9)
C5	0.0291 (10)	0.0199 (9)	0.0296 (10)	-0.0079 (8)	-0.0023 (8)	-0.0011 (7)
C6	0.0445 (12)	0.0277 (11)	0.0320 (11)	-0.0117 (9)	-0.0089 (9)	-0.0020 (8)
C7	0.0699 (17)	0.0634 (17)	0.0420 (14)	-0.0321 (14)	0.0123 (12)	-0.0188 (12)

C8 C9 C10 C11	0.0653 (17) 0.0379 (12) 0.0469 (14) 0.113 (3)	0.0591 (17) 0.0437 (14) 0.0528 (16) 0.0437 (17)	0.0402 (14) 0.0437 (13) 0.0639 (18) 0.089 (2)	-0.0146 (14) -0.0057 (10) -0.0051 (12) -0.0384 (18)	0.0039 (12) -0.0053 (10) -0.0138 (13) 0.014 (2)	-0.0123 (12) -0.0099 (11) 0.0076 (13) -0.0156 (16)
Geometric param	neters (Å, °)					
Zn1—N1		2.0643 (15)	C1—0	C2	1.47	9 (3)
$Zn1-N1^{i}$		2.0643 (15)	C2—0	C3	1.37	2 (3)
$Zn1-06^{i}$		2.1616	C3—0	74	1.48	8 (3)
Zn106		2.1616	C5—(26	1.48	5 (3)
Zn1—01		2.2053 (14)	C6—(27	1.52	0 (3)
Zn1—O1 ⁱ		2.2053 (14)	C6—I	H6C	0.97	00
N1—C5		1.331 (2)	C6—I	H6D	0.97	00
N1—C2		1.375 (2)	С7—(C8	1.50	5 (3)
N2—C5		1.346 (2)	C7—I	H7A	0.97	00
N2—C3		1.369 (2)	C7—I	H7B	0.97	00
N2—H1N1		0.8600	C8—I	H8B	0.96	00
N3—C9		1.322 (3)	C8—I	H8C	0.96	00
N3—C10		1.443 (3)	C8—I	H8A	0.96	00
N3—C11		1.448 (3)	C8—I	H8E	0.96	02
OI—CI		1.240 (2)	C8—I	H8D	0.96	01
02—C1		1.284 (2)	C8—I	H8F	0.96	02
O_2 —HIO2		0.8200 1.274 (2)	C9—1	H10A	0.93	00
03—04 03—H103		0.8200	C10-	-H10R	0.96	00
04-C4		1 234 (2)	C10-	-H10C	0.96	00
05		1.223 (3)	C11-	-H11A	0.96	00
O6—H1O6		0.8201	C11—	-H11B	0.96	00
O6—H2O6		0.8200	C11—	-H11C	0.96	00
N1—Zn1—N1 ⁱ		180.0	03—0	C4—C3	116.	34 (16)
N1—Zn1—O6 ⁱ		92.14 (5)	N1—0	C5—N2	110.	03 (17)
N1 ⁱ —Zn1—O6 ⁱ		87.86 (5)	N1—0	С5—С6	126.	12 (17)
N1—Zn1—O6		87.86 (5)	N2—0	С5—С6	123.	80 (17)
N1 ⁱ —Zn1—O6		92.14 (5)	C5—0	С6—С7	113.	04 (18)
O6 ⁱ —Zn1—O6		180.0	C5—0	С6—Н6С	109.	0
N1—Zn1—O1		78.58 (5)	C7—0	С6—Н6С	109.	0
N1 ⁱ —Zn1—O1		101.43 (5)	C5—0	C6—H6D	109.	0
O6 ⁱ —Zn1—O1		88.98 (4)	C7—0	C6—H6D	109.	0
O6—Zn1—O1		91.02 (4)	Н6С-	C6H6D	107.	8
N1—Zn1—O1 ⁱ		101.43 (5)	C8—0	С7—С6	113.	9 (2)
N1 ⁱ —Zn1—O1 ⁱ		78.57 (5)	C8—(С7—Н7А	108.	8
O6 ⁱ —Zn1—O1 ⁱ		91.02 (4)	C6—0	С7—Н7А	108.	8
06—Zn1—O1 ⁱ		88.98 (4)	C8—0	С7—Н7В	108.	8
O1—Zn1—O1 ⁱ		180.0	C6—0	С7—Н7В	108.	8
C5—N1—C2		106.21 (15)	H7A–	—С7—Н7В	107.	7

C5—N1—Zn1	141.02 (13)	С7—С8—Н8В	109.5
C2—N1—Zn1	112.56 (12)	С7—С8—Н8С	109.5
C5—N2—C3	108.91 (16)	С7—С8—Н8А	109.5
C5—N2—H1N1	125.5	С7—С8—Н8Е	109.5
C3—N2—H1N1	125.5	C7—C8—H8D	109.5
C9—N3—C10	119.9 (2)	H8E—C8—H8D	109.5
C9—N3—C11	121.1 (2)	C7—C8—H8F	109.5
C10—N3—C11	118.4 (2)	H8E—C8—H8F	109.5
C1—O1—Zn1	112.88 (12)	H8D—C8—H8F	109.5
C1—O2—H1O2	110.3	O5—C9—N3	124.6 (2)
C4—O3—H1O3	117.8	О5—С9—Н9	117.7
Zn1—O6—H1O6	112.3	N3—C9—H9	117.7
Zn1—O6—H2O6	109.2	N3—C10—H10A	109.5
H1O6—O6—H2O6	108.9	N3—C10—H10B	109.5
O1—C1—O2	123.54 (16)	H10A-C10-H10B	109.5
O1—C1—C2	118.08 (17)	N3—C10—H10C	109.5
O2—C1—C2	118.37 (16)	H10A-C10-H10C	109.5
C3—C2—N1	109.67 (16)	H10B-C10-H10C	109.5
C3—C2—C1	132.62 (17)	N3—C11—H11A	109.5
N1—C2—C1	117.71 (16)	N3—C11—H11B	109.5
N2—C3—C2	105.17 (16)	H11A—C11—H11B	109.5
N2—C3—C4	122.91 (17)	N3—C11—H11C	109.5
C2—C3—C4	131.90 (18)	H11A—C11—H11C	109.5
O4—C4—O3	124.73 (17)	H11B—C11—H11C	109.5
O4—C4—C3	118.93 (18)		
N1 ⁱ —Zn1—N1—C5	23 (100)	01—C1—C2—N1	2.6 (3)
$O6^{i}$ Zn1 N1 C5	-94.0 (2)	O2—C1—C2—N1	-175.99 (15)
O6-Zn1-N1-C5	86.0.(2)	C5 - N2 - C3 - C2	0.5 (2)
O1— $Zn1$ — $N1$ — $C5$	177.5(2)	C_{5} N2 C_{3} C4	-178.27(17)
$O1^{i}$ —Zn1—N1—C5	-2.5 (2)	N1—C2—C3—N2	-0.2 (2)
N1 ⁱ —Zn1—N1—C2	-151 (100)	C1—C2—C3—N2	-179.58 (19)
$O6^{i}$ —Zn1—N1—C2	92.28 (12)	N1—C2—C3—C4	178.35 (18)
O6—Zn1—N1—C2	-87.72 (12)	C1—C2—C3—C4	-1.0 (4)
O1—Zn1—N1—C2	3.76 (12)	N2—C3—C4—O4	-0.5 (3)
O1 ⁱ —Zn1—N1—C2	-176.24 (12)	C2—C3—C4—O4	-178.83 (17)
N1—Zn1—O1—C1	-2.53 (13)	N2—C3—C4—O3	178.75 (15)
N1 ⁱ —Zn1—O1—C1	177.47 (13)	C2—C3—C4—O3	0.4 (3)
$O6^{i}$ —Zn1—O1—C1	-94.92 (13)	C2—N1—C5—N2	0.4 (2)
O6—Zn1—O1—C1	85.08 (13)	Zn1—N1—C5—N2	-173.60 (14)
$O1^{i}$ —Zn1—O1—C1	168 (100)	C2—N1—C5—C6	-177.05 (18)
Zn1—O1—C1—O2	179.33 (13)	Zn1—N1—C5—C6	8.9 (3)
Zn1—O1—C1—C2	0.8 (2)	C3—N2—C5—N1	-0.6 (2)
C5—N1—C2—C3	-0.1 (2)	C3—N2—C5—C6	176.97 (17)
Zn1—N1—C2—C3	175.82 (12)	N1—C5—C6—C7	110.5 (2)
C5—N1—C2—C1	179.37 (16)	N2—C5—C6—C7	-66.6 (3)
Zn1—N1—C2—C1	-4.7 (2)	C5—C6—C7—C8	-176.5 (2)
O1—C1—C2—C3	-178.04 (19)	C10—N3—C9—O5	-3.7 (4)

O2—C1—C2—C3	3.3 (3)	C11—N3—C9—O5	-17	74.1 (2)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.	-z+1.			
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O6—H2O6…O4 ⁱⁱ	0.82	2.16	2.9594 (14)	167.
O6—H1O6…O4 ⁱⁱⁱ	0.82	1.98	2.796	175.
O3—H1O3···O2	0.82	1.67	2.478	169.
O2—H1O2···O3	0.82	1.66	2.478	177.
N2—H1N1···O5 ^{iv}	0.86	1.84	2.6789 (17)	166.
Symmetry codes: (ii) $-x+2, -y, -z+1$; (i	ii) <i>x</i> , <i>y</i> +1, <i>z</i> ; (iv) <i>x</i> +1, <i>y</i> -1,	Ζ.		

Fig. 1

